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Summary

1. Information-theory procedures are powerful tools for multimodel inference and are now standard methods

in ecology.When performingmodel averaging on a given set of models, the importance of a predictor variable is

commonly estimated by summing the weights of models where the variable appears, the so-called sum of weights

(SW). However, SWs have received little methodological attention and are frequentlymisinterpreted.

2. We assessed the reliability of SW by performingmodel selection and averaging on simulated data sets includ-

ing variables strongly and weakly correlated to the response variable and a variable unrelated to the response.

Our aimwas to investigate how useful SWs are to inform about the relative importance of predictor variables.

3. SW can take a wide range of possible values, even for predictor variables unrelated to the response. As a con-

sequence, SWwith intermediate values cannot be confidently interpreted as denoting importance for the consid-

ered predictor variable. Increasing sample size using an alternative information criterion for model selection or

using only a subset of candidate models for model averaging did not qualitatively change our results: a variable

of a given effect size can take a wide range of SWvalues.

4. Contrary to what is assumed in many ecological studies, it seems hazardous to define a threshold for SW

above which a variable is considered as having a statistical effect on the response and SW is not a measure of

effect size. Although we did not consider every possible condition of analysis, it is likely that in most situations,

SW is a poor estimate of variable’s importance.

Key-words: Akaike InformationCriterion, baseline sumofweights, Bayesian information criterion,
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Introduction

Information-theoretic (IT) approaches are effective techniques

for statistical inference which a growing number of ecologists

have now adopted (Johnson & Omland 2004, Stephens et al.

2007, Garamszegi et al. 2009, Wheeler & Bailer 2009, Burn-

ham, Anderson & Huyvaert 2011, Garamszegi 2011). They

allow assessment and comparison of the support of several

competing hypotheses whereas standard null-hypothesis test-

ing only assesses whether the data fit to one single null hypoth-

esis or not (Mundry 2011). Ecological questions are

fundamentally complex and require many variables and their

interactions to be simultaneously taken into account for infer-

ence. As a consequence, many different models involving dif-

ferent sets of parameters can be considered as competing

hypotheses. Following IT approaches, ecologists first define

the set of R candidate models which they recognize to be of

interest regarding their biological question. These models are

then ranked according to their relative support, based on the

value of an information criterion. This is called themodel selec-

tion procedure and is most frequently based on Aka€ıke Infor-

mation Criterion (AIC) in ecological studies (Grueber et al.

2011, Aho, Derryberry & Peterson 2014, but see Bolker 2008,

p. 219).Models with smaller AIC are better supported, and the

model with the smallest AIC value is ranked first in the candi-

date set of models. However, the set of candidate models does

not necessarily include amodel that comprehensively describes

the biological phenomenon under study, that is, it does not

necessarily include all the meaningful parameters to explain

the data (Link & Barker 2006, Burnham, Anderson & Huyva-

ert 2011). In fact, in biology, a very large number of parameters

may have an effect on the response variable of interest, and
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experimenters are unlikely to measure every meaningful

parameter in their data sets. Also, ecological studies are in

some cases very exploratory, intending to detect a statistical

link between predictor variables and the response variable.

This means that experimenters may unwittingly include spuri-

ous variables (i.e. variables unrelated to the response) in their

candidatemodels.

Model selection thus only provides a way to find the model

that best approximates the data within the set of models, the

so-called best model. The probability that a given model is the

best model is given by its model weight (Burnham&Anderson

2004, Symonds & Moussalli 2011, but see Link & Barker

2006). The weight wi of a model i is computed as the relative

likelihood of i divided by the sum of likelihoods of each of the

R models: wi ¼ expð�Di=2Þ=
PR

r¼1 expð�Dr=2Þ where Di is

calculated as the difference in AIC between a model i and the

first-ranked model (Buckland, Burnham & Augustin 1997,

Burnham & Anderson 2002 p. 75). It follows that, as soon as

the wi of the first-ranked model is different from 1, there is

uncertainty about which model is the best model for inference

(Burnham & Anderson 2002, p. 153, Grueber et al. 2011). In

such cases, it is recommended that interpretations are based on

a set of models rather than on the first-ranked model only

(Burnham&Anderson 2002, Burnham,Anderson&Huyvaert

2011, Garamszegi et al. 2009, Garamszegi 2011). Ecological

conclusions are then drawn from the direct comparison of this

set of competingmodels.

However, a clear interpretation of several competingmodels

is sometimes more challenging than interpreting one model

only, especially when these models include completely different

sets of parameters. Toavoid suchdifficulties, it is recommended

that a consensus model including the correct set of variables

and their effect size averaged across the set of competing mod-

els is built; a procedure called model averaging (Burnham &

Anderson 2002, 2004,Grueber et al. 2011). Variables averaged

effect sizes are thus calculated by summing their estimates in all

or a subset of competing models (e.g. with a cumulated weight

of 0�95), weighted by the wi of each considered model (Burn-

ham & Anderson 2004, Lukacs, Burnham & Anderson 2010).

Also, the probability that a given predictor variable appears in

the best model is estimated by summing the weights wi of each

model where the variable appears (Symonds & Moussalli

2011). A variable’s sum of weights (SW) thus varies between 0

and 1. By extension, SW has been more generally used to mea-

sure the relative importance of predictor variables (Burnham&

Anderson 2002, p. 167–169, Burnham&Anderson 2004).

Sums of weights are now standard measures among ecolo-

gists, because they sometimes see SW as a helpful alternative

to P-values to assess the significance of predictor variables in

IT analyses. Despite popular use among empiricists, little

methodological attention has, so far, been paid to SW, espe-

cially regarding the exact meaning of predictor variable’s rela-

tive importance in the context of IT model selection (Burnham

& Anderson 2002, p. 167–169, p. 345–347). As a result, SW is

subject to an increasing number of erroneous interpretations.

We gathered common misconceptions about SW found in

recent ecological articles (Table 1). Among those quotations,

we identified four kinds of misleading statements as follows:

(i) variables with intermediate SW value (e.g. SW = 0�5) are
important, (ii) it is possible to define an absolute and universal

SW threshold above which variables are considered as impor-

tant, (iii) SWmeasures the probability that the variable has an

effect, (iv) SW is a measure of effect size. Addressing these

issues is both urgent and crucial as they call into question the

very validity of many IT-based studies published in ecological

journals. Using simple simulations, we illustrate the mislead-

ing nature of the four statements listed above and demonstrate

that, in many cases, SW utility is limited, if not absent.

Afirst simulation example

We simulated a data set (sample size n=100) including one

response variable y and four predictor variables, x1, x2, x3 and

x4. We controlled for the correlation structure both between

the response variables and predictor variables and among pre-

dictor variables using a Cholesky decomposition (Genz &

Bretz 2009). This method allows one predictor variable with a

strong effect to be generated together with other variables with

smaller tapering effects, as recommended by Burnham &

Anderson (2002 p. 89, 2004). Variable x1 was strongly corre-

lated to the response variable (Pearson correlation coefficient

ry;x1 ¼ 0�70) whereas x2 and x3 were, respectively, moderately

(ry;x2 ¼ 0�20) and weakly (ry;x3 ¼ 0�05) correlated with the

response y. Variable x4 was uncorrelated with y (ry;x4 ¼ 0�0).
By relying on this correlation structure for the data, we wanted

to simulate the condition of analysis commonly met in ecologi-

cal studies. Even if ecologists have some insights about their

biological system, they do not know for sure which predictor

variables actually best explain the data. Similarly, they do not

know whether they included a spurious variable in the set of

candidate models. Our aim was to show that if one takes vari-

ables unrelated to the response into account in an analysis, it

cannot easily be detected by interpreting SW. Every variable

was normally distributed, and there was no evidence for collin-

earity between predictor variables (Freckleton 2011), as indi-

cated by the maximum value of variance inflation factor of 1�1
(O’Brien 2007).

Themajority of ecological studies use AIC or AICc as infor-

mation criterion for model selection (Grueber et al. 2011,

Aho,Derryberry & Peterson 2014, see also Table 1). Contrary

to AIC, AICc includes a correction for small sample size and is

now recommended over AIC (Burnham & Anderson 2002,

2004, Symonds & Moussalli 2011, but see Richards 2005,

Turek & Fletcher 2012). In our simulations, we therefore con-

ducted model selection and model averaging based on AICc.

Parameters’ averaged estimates and SWwere calculated across

all candidate models. Computations were performed using

MuMIn 1.9.13 package (Barto�n 2013) for R 3.0.2 (R Core

Team2013). R code for data set simulations andmodel averag-

ing procedure are available in the electronic appendix. A sum-

mary of the analysis is given in Table 2. As expected, predictor

variables x1 and x2 occurred among best ranked models and

had a SW equal or close to 1. Both variables x3 and x4 had

intermediate SW values of 0�37. Note that x4, a variable
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Table 1. Example of misleading statements about variable’s importance based on sums of weights (SWs). They all come from recent ecological

papers. The information criterion (IC) for model ranking was either AIC or AICc. We also reported the sample size N, the number of variables n,

andwhether interaction termswere taken into account in candidatemodels.We have anonymized the sentences to focus on errors instead of ad homi-

nem criticisms against colleagues

No Statement IC N n Interaction

1 All traits had a substantial effect (SW > 0�3) on observed responses AIC 1317 7 No

2 The predictor variable had an effect on the response variable (SW = 0�38) AIC 505 5 No

3 The predictor variable obtained some support (SW = 0�37) AICc 54 4 Yes

4 With SWof 0�45 and 0�37, we can interpret these predictor variables as having
around 40%probability that theymay indeed play a role in explaining the

variability of the response variable

AIC 120 4 No

5 The predictor variable x1 increased the response variable (SW = 0�53), while x2
had only a small effect (SW = 0�31)

AIC 12 3 No

6 Five of the ten parameters were important for explaining variation in the response

variable, namely x1 (SW = 0�69), x2 (SW = 0�68), x3 (SW = 0�56), x4 (SW = 0�54)
and x5 (SW = 0�52)

AICc 299 10 Yes

7 A rule of thumb for using these SWwas to consider that SW > 0�95, 0�95–0�5
and <0�5 corresponded roughly to the classical p-values <0�01, 0�01–0�5, >0�05. (. . .)
We estimated average coefficients for important variables (i.e., SW > 0�5)

AICc 36 10 Yes

8 Strong relationships between a predictor variable and the response variable

were indicated by SW from0�75 to 1, andmoderately strong relationships

were associatedwith SW from 0�50 to 0�74; weak relationships were indicated
by SW from 0�25 to 0�49

AICc 52 5 No

9 The statistical support of each variable is expressed by SWexpressing the probability

that the variable affects the response (strong support is indicated by SW0�6; weaker
support is indicated by SWbetween 0�5 and 0�6

AICc 178 5 Yes

10 SW for x1, x2, x3 and x4 were 1�0, 0�51, 0�39 and 0�34, respectively, indicating
that x1 followed by x2 were the twomost important variables influencing

the response variable

AICc 37 5 Yes

11 We determined the relative importance of each covariate based on SWacross

the entiremodel set, with 1 being themost important (present in all models

withweight) and 0 the least important. Covariates were considered important

if they appeared in topmodels (DAICc < 2�0) and had a relatively high
SW (SW > 0�6)

AICc 675 6 Yes

Table 2. Summary of the model selection procedure applied to the first simulated data set. For each of the 16 models, we reported parameter esti-

mates, total number of estimable parameters (k), the log-likelihood (logðLÞ), AICc criterion, Di=AICci�minAICc, Akaike weight (wi) and

adjustedR2.Models are ordered in terms ofDi forAICc. At the bottom of the table, we reported, for the four variables (x1, x2, x3, x4) and the inter-

cept (int), model-averaged estimates b̂with their 95% confidence interval (95%CI) and their sum of weights (SW)

int x1 x2 x3 x4 k logðLÞ AICc Di wi R2

�3�79 0�676 0�199 4 �105�97 220�4 0�00 0�353 0�559
�4�60 0�678 0�201 0�076 5 �105�26 221�2 0�79 0�238 0�566
�4�86 0�684 0�204 0�094 5 � 105�27 221�2 0�81 0�236 0�566
�5�25 0�684 0�204 0�060 0�073 6 � 104�86 222�6 2�26 0�114 0�570
�1�83 0�678 3 � 109�72 225�7 5�32 0�025 0�520
�2�56 0�680 0�071 4 � 109�15 226�7 6�35 0�015 0�526
�2�71 0�686 0�081 4 � 109�23 226�9 6�53 0�014 0�525
�3�08 0�685 0�057 0�061 5 � 108�90 228�4 8�06 0�006 0�528
2�73 0�208 3 � 141�32 288�9 68�53 0 0�430
2�10 0�210 0�061 4 � 141�10 290�6 70�25 0 0�475
4�82 2 �143�39 290�9 70�54 0 0

2�62 0�209 0�011 4 � 141�42 291�1 70�69 0 0�341
4�26 0�055 3 � 143�21 292�7 72�31 0 0�038
2�19 0�210 0�064 �0�011 5 � 141�09 292�8 72�46 0 0�476
4�84 �0�002 3 �143�39 293�0 72�67 0 0

4�44 0�061 �0�024 4 �143�19 294�8 74�44 0 0�042

SW 1�00 1�00 0�94 0�37 0�37
b̂ �4�31 0�679 0�201 0�070 0�086
95%CI [�7�0;�1�6] [0�54;0�81] [0�06; 0�34] [�0�06;0�20] [�0�08;0�25]
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unrelated to the response, also appeared among best ranked

models and, contrary to what is assumed in the literature (e.g.

Garamszegi et al. 2009, Table 1, quotation 11), had a SW

different from 0.

SW range of variation

We further investigated SW values by repeating the analysis

described above over 10 000 independent simulations.We esti-

mated the distributions of SW for the strongly correlated vari-

able x1 (Fig. 1a), the two more weakly correlated variables x2
(Fig. 1b) and x3 (Fig. 1c) and for x4 which was unrelated to y

(Fig. 1d). As expected, variable x1 had a SW consistently

equal to 1. However, the distribution of SW values for other

variables was very large.Mean SW for x2 was 0�9, with 95% of

SW ranging from 0�49 to 1. For x3 and x4, mean SW were,

respectively, 0�37 (95% of SW ranging from 0�25 to 0�79) and
0�36 (95% of SW ranging from 0�25 to 0�83). This means that

predictor variables with different effects on the response could

have similar SW values, so that SW alone is not necessarily

informative about the relative importance of different vari-

ables. Besides, with x4 having a SW consistently >0 and often

reaching values above 0�5, it seems misleading to set up a

threshold for SW above which a predictor variable is consid-

ered as important (e.g. Table 1, quotations 7 and 9). Below,

we investigate whether larger sample sizes, alternative informa-

tion criteria or smaller subsets of models used for model aver-

aging could improve SWperformances.

EFFECT OF SAMPLE SIZE

With increasing sample size, mean SW for genuine variables

x1, x2 and x3 increased up to 1 (Fig. 2a,b,c). However, SW for

x4 did not reach 0 and its distribution did not narrow, so that

x4 could still have SW values as important as 0�8 even for

n = 5000 (Fig. 2d). Therefore, increasing sample size is not

likely to lower the risk of overestimating the support of predic-

tor variables when interpreting intermediate values of AIC-

based SW. This is not surprising considering that AIC is an

asymptotically efficient criterion, in the sense that it seeks to

optimize predictive accuracy (Burnham & Anderson 2004,

Aho, Derryberry & Peterson 2014). As a consequence, best

ranked models tend to consist of a growing number of vari-

ables as sample size increases; more parsimonious models

include more parameters as sample size increases (Johnson &

Omland 2004, Link & Barker 2006, Bolker 2008). That is why

SW for genuine variables reached 1. That is also why x4 has a

non-null SW: it is sometimes mistakenly considered as improv-

ing predictive accuracy. For this reason, AIC is not asymptoti-

cally optimal when the goal is to confirm or reject hypotheses

(Aho, Derryberry & Peterson 2014). It follows that AIC-based

SW does not seem to provide an accurate means of estimating

the presence or absence of an effect of predictor variables on

the response.

ALTERNATIVE INFORMATION CRITERION

Some authors discussed the relative performance of model

selection based on Akaike vs. Bayesian information criteria

(BIC), also known as Schwarz criterion (e.g. George 2000,

Burnham&Anderson 2004, Link&Barker 2006, Bolker 2008,

p. 219–220). Although BIC is much less frequently used in eco-

logical papers (Grueber et al. 2011, Aho, Derryberry & Peter-

son 2014), it penalizes overly complex models (Link & Barker

2006, Bolker 2008) and is therefore susceptible to exclude spu-

rious variables from better ranked models. We repeated the

simulations described above using BIC in model selection and

model averaging. As for AICc, SW for genuine variables in

BIC-based analyses reached 1 for large sample sizes (Fig. 3a–

c). However, BIC-based SW have better asymptotic properties

with regard to x4. The values of SW for this variable

uncorrelated with y tend towards 0 with increasing sample size

(Fig. 3d), thus increasing the experimenter’s confidence about

the absence of effect of x4 on the response. This result is in
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Fig. 1. Expected distribution of AICc-based

SW for each predictor variable: (a) x1, (b) x2,

(c) x3, (d) x4. Their distribution was estimated

from 10 000 simulated independent data sets.

For each data set, the sample size was n = 100.

Predictor variables x1, x2 and x3 were ran-

domly generated to be, respectively, strongly

(mean r = 0�7, range in sample from 0�69 to

0�71), moderately (mean r = 0�2, range in sam-

ple from 0�19 to 0�21) and weakly (mean

r = 0�05, range in sample from 0�04 to 0�06)
correlated with the response variable y,

whereas x4 was uncorrelated with y (mean r =
0�0, 95% range in sample from �0�2 to 0�2).
The vertical dotted line shows the mean of

each distribution.

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 983–991

986 M. Galipaud et al.



accordance with the fact that BIC is asymptotically consistent,

that is it selects the correct number of variables (Aho, Derry-

berry& Peterson 2014, Bolker 2008).

Nonetheless, for small-to-moderate sample sizes (up to

n = 500), the distribution of both AIC- and BIC-based SW for

x4 – which was unrelated to the response – largely overlapped

the distribution of SW for genuine variables (e.g. x3). This lim-

its the accuracy of interpretation about variables’ importance

for analyses based on both criteria. In addition, we generally

observed a good qualitative agreement between AIC-based

and BIC-based SW in our simulations. For a given sample size,

these two measures appeared to be linked by a monotonic

relationship (Fig. 4). For low sample sizes, there was good

quantitative accordance between them. For medium-to-large

sample size, the absolute values of SW differed but the ranks

were preserved: the lowest AIC-based SW corresponded to the

lowest BIC-based SW.

To conclude, although BIC-based SWs seem to provide

more accurate measures of predictor variables’ importance

than AIC-based SWs in very large sample sizes, both criteria

result in almost non-informative SW under sample sizes more

commonly found in ecological studies (Table 1).

SMALLER SUBSET OF MODELS

Many papers addressed the issue of whether the model averag-

ing procedure should be based on every ranked models (e.g.

Grueber et al. 2011, Richards, Whittingham & Stephens

2011). To avoid giving too much importance to spurious vari-

ables, they argue that only a subset of best ranked models

should be used for the analysis: for example, a confidence set

of models based on 95% cumulated model weights, (Burnham

& Anderson 2002), the subset of models with Di lower than 2,

4, 6 and 10 (Richards 2008, Bolker et al. 2009), or a confidence
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Fig. 2. Effect of sample size on the expected

distribution of AICc-based SW for each pre-

dictor variable: (a) x1, (b) x2, (c) x3, (d) x4. Pre-

dictor variables x1, x2 and x3 were randomly

generated to be, respectively, strongly (mean r

= 0�7, range in sample from 0�69 to 0�71), mod-

erately (mean r = 0�2, range in sample from

0�19 to 0�21), and weakly (mean r = 0�05, range
in sample from 0�04 to 0�06) correlated with

the response variable y, whereas x4 was uncor-

related with y (mean r = 0�0). For each sample

size, we computed the mean SW (dot), inter-

quartile interval (thick line) and 95% interval

(thin line) from 10 000 simulated independent

data sets.
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Fig. 3. Effect of sample size on the distribution

of BIC-based SW for each predictor variable:

(a) x1, (b) x2, (c) x3, (d) x4. Predictor variables

x1, x2 and x3 were randomly generated to be,

respectively, strongly (mean r = 0�7, range in

sample from 0�69 to 0�71), moderately (mean r

= 0�2, range in sample from 0�19 to 0�21) and
weakly (mean r = 0�05, range in sample from

0�04 to 0�06) correlated with the response vari-

able y, whereas x4 was uncorrelated with y

(mean r = 0�0). For each sample size, we com-

puted the mean SW (dot), interquartile inter-

val (thick line) and 95% interval (thin line)

from 10 000 simulated independent data sets.
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set of models built by removing nested models complicating

the first-rankedmodel within the subset ofmodels withDi < 6

(Richards 2008, Richards, Whittingham & Stephens 2011).

None of these alternative procedures qualitatively changed our

findings. The range of variation of SW was still very large for

predictor variables which were moderately, weakly or uncorre-

lated to the response (Table 3).

ADDING INTERACTION TERMS IN MODELS

Sums of weights are likely to strongly vary between studies and

analyses undertaken. In our simulations, adding interactions

between variables in candidate models (as commonly done in

ecological studies) generally increased the SW values of predic-

tor variables. Figure 5 shows the result of 10 000 independent

repetitions of model averaging procedures applied to the four

variables considered earlier and all their two-way interactions.

For x4, which was uncorrelated to the response, 95% of SW

ranged from 0�49 to 0�98, Fig. 5d). Adding interactions

between predictor variables increased the number of models

where variables appeared, therefore artificially inflating their

SW values (Dochtermann & Jenkins 2011, Grueber et al.

2011). Incidentally, the presence of interaction terms in candi-

date models severely impairs any interpretation about variable

importance based on SW.

NON- INFORMATIVE SW

Due to all the reasons listed above, there are many situations

where intermediate to large SW values cannot be confidently

interpreted as indicating importance. Although particularly

common in ecological studies, SW-based analyses combining

low-to-intermediate sample sizes and interaction terms must

be avoided or, at least, be interpreted with the greatest caution.

We do not aim to provide the reader with all possible theoreti-

cal ranges of SW variation for given predictor variables. Many

factors may influence SW theoretical distribution. A non-

exhaustive list could for example include variable type (cate-

gorical or continuous), link function and distribution of the

residuals (binomial, Poisson, ...) or parametrization of the

models (number and effect sizes of parameters, Burnham &

Anderson 2004). Instead, we believe that it is much more valu-

able to provide ecologists with a method allowing to assess the

reliability of SW in the context of their analyses.

It has been proposed that, to assess the importance of a pre-

dictor variable, one should first estimate the SW distribution

expected if this variable had no predictive value (Burnham &

Anderson 2002, p. 345–347). Such a baseline SW distribution

can be calculated by randomizationmethods. This can be done

by permuting the response variable y, thus reorganizing the

data as if all predictor variables considered for the analysis

were uncorrelated to the response (see the R code inData S1 in

the Supporting Information for an example). Applying model

averaging over a great number of permuted data sets allows

estimation of a baseline SW distribution for all considered pre-

dictor variables simultaneously. Another possibility could

involve permuting only one predictor variable of interest

within the data set to estimate its baseline SW distribution

alone while keeping all the other variables unchanged. Run-

ning 10 000 independent permutations of y on the simulated

data set used in Table 2, we estimated a baseline SW distribu-

tion for each predictor variable (i.e. x1, x2, x3 and x4). This dis-

tribution is the same for the four predictor variables with 95%

of baseline SW values ranging from 0�25 to 0�82. Such a large

variation in baseline SW renders any interpretation about the

variable’s importance very difficult. Of course, a strong

assumption behind the use of AIC in model selection is that

Table 3. Comparison of the mean AICc-based SW (and their 95%

range between brackets) for different subsets of models used for the

model averaging. See text for explanations. These values were com-

puted from 10 000 simulated data sets

x1 x2 x3 x4

All models 1 0�89 0�37 0�36
[1; 1] [0�49; 1] [0�25; 0�79] [0�25; 0�83]

95%of the

cumulated weights

1 0�93 0�35 0�33
[1; 1] [0�53; 1] [0�17; 0�85] [0�16; 0�90]

D < 2 1 0�95 0�42 0�41
[1; 1] [0�48; 1] [0�17; 1] [0�17; 1]

D < 4 1 0�93 0�37 0�36
[1; 1] [0�48; 1] [0�19; 0�86] [0�18; 0�88]

D < 6 1 0�91 0�38 0�36
[1; 1] [0�48; 1] [0�24; 0�83] [0�25; 0�84]

D < 10 1 0�90 0�38 0�36
[1; 1] [0�48; 1] [0�25; 0�83] [0�25; 0�84]

Without

nestedmodels

1 0�89 0�26 0�27
[1; 1] [0�34; 1] [0�04; 0�86] [0�04; 0�89]

Fig. 4. Relationship between AICc-based and BIC-based SW, com-

puted from 10,000 independent simulated data sets of sample size n =
20 (blue), n = 100 (orange) or n = 5000 (green). We represented every

SW computed for each data set. The grey dashed line corresponds to

the line of perfect concordance between the two measures of SW. For

the three sample sizes, the Spearman coefficient of correlation was lar-

ger than 0�99.
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every parameters considered in candidatemodels have an effect

on the response, no matter how small it is (Burnham&Ander-

son 2002, Symonds & Moussalli 2011). But under real condi-

tions of data collection and analysis, experimenters could

include a spurious variable with initial conviction that it has an

effect on the response (Symonds &Moussalli 2011). Acknowl-

edging this possibility, baseline SWs, together with Di, wi and

averaged parameter estimates, help to detect the conditions of

analysis under which interpretations about variable’s impor-

tance based on SWmust be avoided, that is when baseline SWs

can take awide range of possible values (up to 1).

Discussion

The SW is one of themost common estimates of predictor vari-

able’s importance in ecological papers relying on model aver-

aging analyses. However, experimental studies frequently fail

to correctly interpret SW. In the following paragraphs, we will

explain why the four statements presented in the introduction

aremisleading in the light of our findings.

MISCONCEPTION 1

Many authors performing AIC-based multimodel inferences

consider predictor variables with SW between 0�3 and 0�7 as

important (e.g. Table 1, quotations 1–6, 11). However, we

showed that variables uncorrelated to the response do not have

SW = 0 and, more importantly, often reach SW values similar

to those of genuine variables, up to 1. Consequently, ecologists

cannot interpret the importance of variables based on their

SW alone.

MISCONCEPTION 2

Anatural temptation is to try to define an absolute SW thresh-

old for significant variable effect on the response (e.g. Table 1,
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Fig. 5. Expected distribution of AICc-based

SW, computed based on 10 000 simulated

data sets, for the four variables and some of

their interactions: (a) x1, (b) x2, (c) x3, (d) x4,

(e) interaction between x1 and x3, (f) interac-

tion between x2 and x3, (g) interaction between

x1 and x2, (h) interaction between x3 and x4.

For each data set, the sample size was n=1000.
Predictor variables x1, x2 and x3 were ran-

domly generated to be, respectively, strongly

(mean r = 0�7, range in sample from 0�69 to

0�71), moderately (mean r = 0�2, range in sam-

ple from 0�19 to 0�21) and weakly (mean r =
0�05, range in sample from 0�04 to 0�06) corre-
lated with the response variable y, whereas x4
was uncorrelated with y (mean r = 0�0, 95%
range in sample from �0�2 to 0�2). Candidate
models only include two-way interactions.

The vertical dotted line shows the mean of

each distribution.
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quotations 7, 9, 11). According to some authors (e.g. Calcagno

& de Mazancourt 2010), SW larger than a threshold (for

instance SW > 0�8) would always denote importance, what-

ever the data set and candidate models considered. We believe

that this is incorrect. The distributions of SW are likely to be

highly variable between studies, and it is dubious that such an

absolute threshold can be defined in every situation. Ecologists

are trained to use 95% confidence intervals as a criterion for

variable support. However, we strongly warn the reader

against blindly using SW = 0�8 as a threshold just because it

corresponds to the upper limit of 95% range of SW distribu-

tion in many of our simulations. Following the same reason-

ing, it is also hopeless to define absolute ranges of SW values

denoting weak, moderate or strong support for the corre-

sponding variable (e.g. Table 1, quotations 7–9). We must

insist on the fact that our aim here is not to introduce binary

thinking into IT. The upper limit of the 95% range of SW dis-

tribution should not be used as a threshold to dichotomize

between significant and non-significant variables. Such a bin-

ary distinction is in conflict with the IT philosophy.

MISCONCEPTION 3

For several authors, SW is a measure of the probability for the

corresponding variable to play a role in explaining the data

(e.g. Table 1, quotations 4, 11). This formulation is misleading

and should be avoided. In its pure mathematical sense, SW is

indeed a probability for the corresponding variable to appear

in the best model (Burnham, Anderson & Huyvaert 2011,

Symonds & Moussalli 2011). However, SW should not be

taken as a probability that the variable has a statistical effect. If

it was so, the absence of effect would be associated with

SW = 0. This was hardly ever the case in our simulations,

except when using BIC as the criterion for model selection and

averaging with very large sample sizes.

MISCONCEPTION 4

Some statements about variable importance are ambiguous

when implying that SW could represent ameasure of effect size

(e.g. Table 1, quotations 1, 5, 8). In the same way that a

p-value is not a measure of effect size (Nakagawa & Cuthill

2007, Mundry 2011), large SW should certainly not be inter-

preted as denoting large effects. Accordingly, referring to SW

as a measure of variable relative importance (as it is the case in

the ecological literature, see also Table 1, quotation 11) is

somewhat confusing. For instance, SW for x2 and x3 strongly

increased with increasing sample size even though we simu-

lated these variables as having constant effect sizes. Increasing

SW values only means that we are indeed much more certain

about the presence of x2 and x3 in the best approximating

model with increasing sample size. In contrast to SW, unstan-

dardized measures of effect size are provided by averaged

parameter estimates (Nakagawa & Cuthill 2007). Although

some authors pointed out possible biases in relying on model-

averaged estimates for inference (Richards 2005, Richards,

Whittingham & Stephens 2011), others believe that, for sound

interpretations, they should always be preferred to parameter

estimates of the first-ranked model (Burnham & Anderson

2002, Garamszegi et al. 2009, Burnham, Anderson & Huyva-

ert 2011, Symonds & Moussalli 2011). In addition, unbiased

calculations of 95% confidence intervals around averaged esti-

mates (Fletcher & Dillingham 2011, Turek & Fletcher 2012)

help to interpret the uncertainty in parameters estimation and

thus to understand the uncertainty in variable’s importance.

Beyond model averaging, interpretations based on SW

should only be carried out if candidate models in the selected

set fit the data. Amodel weight does not give, in itself, an abso-

lute evaluation of how informative the model is with regard to

the observed variation in the data. We noted that papers rely-

ing on IT approaches seldom report deviance or variance

explained by candidate models, although it allows assessment

of models fits and provides absolute measures of their explana-

tory power. For example, R2 is a metric that ecologists are

already trained to report and interpret. A model selection may

lead to models with large weights and predictor variables with

SW values close or equal to 1 even if those models have very

lowR2. In that case, because the fit of themodels under consid-

eration is poor, little can be learned despite largemodel weights

and variable SW (Burnham, Anderson & Huyvaert 2011, Sy-

monds & Moussalli 2011). Even if one cannot base the model

selection procedure on the analysis of R2 (Burnham & Ander-

son 2002, p .95), authors should systematically reportR2 values

alongside their models.

To conclude, there is an inherent need among ecologists to

assess the importance of predictor variables. In IT, this role is

often played by SW. However, interpreting SW should be car-

ried out with particular caution because a given variable can

take a wide range of SW values under sample sizes generally

found in ecological studies. This implies that spurious variables

unwittingly included in the analysis may not easily be excluded

from an averaged best model for inference or may not be

detected as having no effect on the response.
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