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1  |  INTRODUC TION

Variation is ubiquitous across living systems but also to time- 
dependent fluctuations in abiotic parameters, ranging from the most 
periodic (e.g. circadian and seasonal rhythms) to the least predictable 

(e.g. meteorological conditions) (Cornwall et al., 2013; Dobry 
et al., 2021; Fujiwara, 2009; Guadayol et al., 2014; Massetti, 2020). 
Variability is characterized by two key components: constancy (the 
stability of a variable) and contingency (the autocorrelation of vari-
ations in an abiotic parameter) through time (Abrahms et al., 2021; 
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Abstract
1. Environmental stochasticity in abiotic factors is inherent to ecosystems and 

is exacerbated by global change. However, experimental protocols typically 
cancel this factor by using cyclic or constant conditions, limiting the study of 
environmental variations. This simplification highlights the need for better 
methodological tools to control fluctuating environmental variables.

2. We present here a guidance and solution for generating and implementing 
stochastic environmental conditions through our Raspberry Pi System for 
environmental Stochasticity (PiStoch). This low- cost, low- tech and scalable 
method for mesocosm experiments also has the potential to replicate any other 
form of variability, including cyclic patterns.

3. This system successfully reproduced stochastic time series in temperature and 
oxygen manipulation experiments. Testing with two biological case studies 
(macrophyte biomass and freshwater fish oxygen consumption), it demonstrated 
that thermal stochasticity had stronger effects than mean temperature, 
highlighting the importance of studying fluctuating conditions.

4. Developing accessible methods to study organismal responses to environmental 
stochasticity is essential for improving the realism of laboratory experiments and 
enhancing the accuracy of physiological and ecological predictions.
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Beissinger & Gibbs, 1993; Riotte- Lambert & Matthiopoulos, 2020). 
Thus, the degree of variability follows a continuum ranging from 
highly constant and contingent conditions (i.e. stable) to conditions 
of very low constancy and contingency (i.e. stochastic).

Climate change and pervasive anthropogenic activities are pre-
dicted to disrupt both environmental contingency and constancy, in-
creasing the stochasticity of abiotic conditions (Chefaoui et al., 2024; 
Easterling et al., 2000; Helbling et al., 2024; Jenny et al., 2016; Oliver 
et al., 2018; Sampaio et al., 2021; Smucker et al., 2021). While pre-
dictable fluctuations favour the emergence of evolutionary adap-
tations, stochasticity provides fewer cues for organism response, 
imposing specific constraints on performance (Arnoldini et al., 2012; 
Bernhardt et al., 2020; Lovegrove, 2000). Empirical studies have 
also revealed context- dependent effects of variability (Bernhardt 
et al., 2018; Bozinovic et al., 2011; Colinet et al., 2015; Kingsolver 
et al., 2015; Noe, 2002; Slein et al., 2023), underlining the complex-
ity of the mechanisms involved. Consequently, incorporating vari-
ability into experimental studies has become increasingly important 
for evolutionary ecologists seeking to predict organism responses 
and better understand evolutionary processes under global change 
(Franch- Gras et al., 2017; Morash et al., 2018; Vasseur et al., 2014; 
Verheyen & Stoks, 2019).

The impact of stochasticity on organisms, population dynamics 
and community structure has primarily been studied through the-
oretical models (Reed et al., 2010; Roughgarden, 1975; Shoemaker 
et al., 2020). Current experimental approaches typically reproduce 
deterministic patterns of variability, neglecting the limited contin-
gency that characterizes real- world stochasticity (Burggren, 2019; 
Gerhard et al., 2023). Indeed, most laboratory- based studies ad-
dress variability through cyclic (Braz- Mota et al., 2024; Foray et al., 
2014; Massey et al., 2022; Pettersen et al., 2024; Salinas et al., 2019), 
gradual or stepwise patterns (Burggren, 2019), even if recent stud-
ies attempt to upgrade ecological realism by incorporating unpre-
dictable aspects that are, for instance, carried in a field approach 
(Cicchino et al., 2024; von Schmalensee, 2023). This mismatch be-
tween environmental stochasticity and experimental conditions will 
likely increase due to global change, emphasizing the need to move 
beyond traditional contingency frameworks (Burggren, 2019; Ibáñez 
et al., 2013).

The limited consideration of proper stochasticity in experi-
mental literature, despite its biological relevance, reveals a critical 
methodological limitation in controlling abiotic parameter variations. 
Experimenting with stochasticity requires generating appropriate 
stochastic time series (hereafter, input) and implementing them in 
experimental set- ups to match recorded parameter variations in me-
socosms (hereafter, output) (Figure 1). This presents three main chal-
lenges: (i) generating appropriate stochastic time series that combine 
low contingency with experimenter- defined constraints for treat-
ment comparison and protocol repeatability, (ii) coordinating regula-
tory systems to replicate given time series, which has led to accurate 
but costly commercial solutions (e.g. Memmert incubators, Campbell 
Scientific, Loligo Systems, Optoreg by Ern and Jutfelt (2024), Ecolab 
by Verdier and colleagues (2014)), and DIY systems that struggle 

to simulate intended stochastic conditions (Greenspan et al., 2016; 
Pisano et al., 2019) and (iii) achieving accurate input–output match-
ing through frequent, bidirectional (i.e. positive and negative), and 
abrupt automatic parameter adjustments.

To address these methodological gaps, we present the 
Raspberry- Pi System for applying environmental Stochasticity 
(PiStoch). This all- in- one, low- cost and versatile system offers pos-
sibilities to generate, implement and apply any form of variable en-
vironmental conditions in experimental set- ups. While PiStoch can 
simulate any pattern along the variability continuum, we demon-
strate its efficiency in controlling temperature and dissolved oxygen 
variations in two aquatic case studies investigating thermal stochas-
ticity effects on a freshwater fish and pond macrophytes. This re-
liable and financially accessible method expands opportunities for 
ecologists to explicitly manipulate stochasticity in their experimen-
tal work, enabling more realistic replication of natural system dy-
namics and improving prediction accuracy.

2  |  MATERIAL S AND METHODS

2.1  |  Modelling stochasticity

Being able to modulate both the constancy and contingency of pa-
rameter variation is crucial for addressing a wide range of biological 
questions (Figure 1, input–issues). Here, we introduce two algorithms 
that enable the simulation of parameter variation over time. These 
algorithms allowed for varying the two main components of stochas-
ticity by modulating both the constancy and the contingency (degree 
of temporal autocorrelation) in the time series (Figure 1, input–solu-
tions). The controlled parameters can be any abiotic parameter (e.g. 
temperature, dissolved oxygen saturation, pH and light intensity).

2.1.1  |  Constrained random walk

To generate stochastic time series of parameter P that must however 
satisfy some specific properties (e.g. mean Pmean, variance Pvar, and 
range of the parameter Pmin and Pmax, maximum variation rate per unit 
of time Prate), an algorithm of constrained random walk algorithm is a 
straightforward method. The total duration of the series is discretized 
in fixed time steps t. Stochastic time series are generated based on a 
free one- dimensional and discrete random walk that changes through 
time, according to a Markov (memoryless) process P(𝑡) = P(𝑡−1) + 𝜖, 
where P is the value of the considered parameter, t is time step, and 
𝜖 is the parameter variation simulated as an independent and identi-
cally (no overall trend) distributed (iid) random variable, drawn from 
a jump distribution at each time step. 𝜖 can rely on discrete jumps 
(e.g. {−0.3, 0.3}) or, for even lower contingency, on Brownian move-
ment (e.g. N(𝜇 = 0, 𝜎)). The controlled parameter can therefore either 
increase, decrease or remain stable between two consecutive time 
steps. Such unconstrained random walk can lead to stochastic time 
series which strongly differ in terms of properties (e.g. range, mean, 
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    |  3SOUQUES et al.

variance and bridge condition). We used brute force to control these 
properties of the stochastic time series. Simulations of time series 
are repeated as often as necessary until satisfying properties are met 
(see source code on Zenodo; Souques et al., 2025).

This algorithm is highly versatile. Increasing the contingency in 
the stochastic time series is possible, with the addition of other con-
straints (e.g. fixing the starting and ending parameter values, gener-
ating cyclic patterns by forcing the parameter value at 𝑡 to be higher 
or lower than at 𝑡−1). Modulating the properties related to amplitude 
(Pmin and Pmax) and variance (Pvar and Prate) of the time series allows 

to increase its constancy. To sum up, any wanted pattern can be 
modelled with this algorithm.

2.1.2  |  Sinusoid method: Cyclic pattern with flexible 
degree of stochasticity

A different method than the constrained random walk algorithm to 
incorporate rhythmicity (e.g. circadian) while allowing for potential dif-
ferences between each period, is to model stochastic time series based 

F I G U R E  1  Conceptual scheme illustrating the different modules of PiStoch (see Section 2 for more details on each module).
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4  |    SOUQUES et al.

on a day- time sinusoid curve modulated by a random process The sine 
function is built on a 24- h interval, cut in 24 setpoints (1 per hour): 12 for 
daytime and 12 for night- time. On each setpoint, the value of the studied 
parameter is randomly weighted by a coefficient bounded between a 
maximum and a minimum, regarding the acceptableness of the variation 
the studied organism can handle, to preserve the general sine aspect.

2.2  |  Experimental set- up: Implementing and 
applying stochasticity

2.2.1  |  Sensor and controller

The stochastic time series (i.e. Figure 1—input) is implemented in Python 
(see source code Zenodo; Souques et al., 2025) and deployed on a 
monocard nano- computer Raspberry Pi (i.e. Figure 1—controller). The 
system's hysteresis threshold defines the tolerance limit between input 
and output values, determining when the regulatory pathways (i.e. 
Figure 1—Regulator) are activated. This threshold, combined with the 
regulator lag specific to each set- up, prevents system self- limitations 
and ensures successful achievement of target parameter values.

System monitoring and control is facilitated through the Virtual 
Network Computing software (RealVNC Viewer 7.12.0). The set- up can 
be expanded with additional components, such as a high- capacity SD card 
for increased storage or an external display for direct data visualization.

The Raspberry Pi interfaces with a digital probe (Figure 1—Sensor) 
that continuously measures the parameter of interest at regular in-
tervals (e.g. every 10 seconds). We opted for a digital, rather than 
an analogue probe, to enable binary signal reading and eliminate 
signal degradation over long cable runs. Consequently, a 1- Wire 
protocol (Analog Devices, Inc.) was used to connect the sensor with 
the Raspberry Pi. Such connection protocol imposes rigorous con-
straints on the set- up (e.g. recommendation of a bus type connec-
tion, USB- 1- Wire controller and converter to improve the reliability 
of the system by avoiding communication conflicts).

The Python control program operates by comparing sensor sig-
nals with input values at each time step. The system response follows 
two main paths: (i) When the sensor value matches the input, the sys-
tem maintains its current state or (ii) when the sensor value deviates 
from the input, the positive/negative regulator (see Section 2.2.2) is 
activated to increase/decrease the parameter value. These regulatory 
actions continue until the sensor value aligns with the input target.

2.2.2  |  Regulator

The regulatory system implementation requires a specific hardware 
configuration (Figure 1c). The Raspberry Pi connects to the regulator 
through two pins, featuring a dual on/off switch. This switch comprises 
an electrical relay connected to a 220- V power supply, ensuring ad-
equate power delivery to each device. The system employs Transistor–
Transistor Logic (TTL), with each pin independently controlling one relay 
to activate either the positive or negative pathway as needed.

2.2.3  |  Set- up checking

PiStoch incorporates multiple checking systems to ensure operational 
reliability. Users can remotely monitor measured values and their cor-
responding setpoints in real- time via an online interface. The system 
stores data in InfluxDB (version 1.8.10), an open- source time- series da-
tabase, and displays it through Grafana (version 8.4.3), an open- source 
visualization platform. In addition, the Python- based control program 
includes safety constraints that automatically deactivate (i.e. emergency 
stop) regulation pathways if values exceed specified thresholds and also 
send warning emails when abnormal conditions are detected.

2.3  |  Testing the efficiency of the experimental 
set- up

We demonstrate the system's functionality using two water parameters.
First, the system's responsiveness has been tested with three 

experiments manipulating water temperature using modelling meth-
ods presented above (see Section 2.1): (i) Stochastic time series, (ii) 
Stochastic time series incorporating a cyclic pattern. All experiments 
have been conducted in accordance with animal care guidelines 
and have been approved by the ethics committees of Lyon (France), 
as well as the Ministry of Research and Higher Education (APAFIS 
#51425- 202410151503521 v2).

We implemented and applied these time series using the material 
listed in Table S1 (columns ‘Module’, ‘Item’ and ‘Price’).

 (i) Stochastic time series—The input modelled with a constrained ran-
dom walk met the following conditions: mean temperature = 21°C 
± 0.1, minimal temperature = 18°C reached at least once, maximal 
temperature = 24°C also reached at least once, 0.3°C variation per 
10- min time step (i.e. the temperature variation could not exceed 
1.8°C per hour). Additionally, the top and lower 33% temperature 
values had to represent less than 30% of the whole time series to 
ensure that temperatures would not remain disproportionately 
close to bound values. A ‘bridge condition’ has been implemented 
to ensure that the initial and the final values would remain close to 
the mean temperature value. This experiment lasted for 6 days.

 (ii) Stochastic time series incorporating a cyclic pattern—The input 
was based on daytime sinusoid. The instructions given to the 
system were: mean = 13°C, minimal temperature = 8°C, maxi-
mal temperature = 18°C measurements of water temperature 
in the mesocosm. The variable temperature regime was simu-
lated with a sine function divided into 24 times steps, to vary 
the temperature setpoint every hour. Each time step was mul-
tiplied by a randomly generated value ranging from 0.01 to 5°C 
each day and −0.01 to −5°C each night. This experiment lasted 
for 10 weeks (only 5 days are shown in Figure 2c,d).

A robustness test to a challenging time series has been added in sup-
porting information (Appendix S1). The aim was to estimate the minimum 
time lag required for the system to maintain accurate responsiveness 
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    |  5SOUQUES et al.

when confronted with a time series where the target temperature fol-
lowed variations of 10°C amplitude with increasing frequency (Figure S1).

To control temperature variations in water, a submersible water 
heater was used as a positive regulation pathway and a closed circuit 
initiated with a water pump as a negative regulation pathway. The 
cooling system circulates water through a metal coil immersed in a 
temperature- controlled cool box (maintained at 8°C). The controller 
manages the pump's activation duration (longer operation periods 
resulting in greater cooling effect). The design keeps aquarium and 
cool box water separate, allowing multiple aquariums to share a single 
cool box through individual coils. A tutorial presenting the steps used 
in our mesocosm experiments to regulate temperature using PiStoch 
is available in a public repository (see zenodo; Souques et al., 2025).

Second, we tested system responsiveness with an experiment ma-
nipulating water saturation in dissolved oxygen for 24 h following a sto-
chastic time series modelled based on the above- described constrained 
random walk method. The simulated model met the following conditions: 
mean O2 content = 80%, minimal O2 content = 10% reached at least once, 
maximal O2 content = 110% also reached at least once, 5% variation per 
5 min time step (i.e. the variation could not exceed 60% per hour).

To control dissolved oxygen saturation variations in water, we 
used a bubbler as positive regulation pathway and a dinitrogen bot-
tle as negative regulation pathway. The controller manages both the 
bubbler activation and solenoid valve opening.

2.4  |  Statistical analyses

We assessed the matching between the input and output time series 
(i.e. the reliability of the system) of temperature and dissolved oxy-
gen, by quantifying the strength of the linear regression between 
the two time series (response variable: input; predictor variable: out-
put) as R2 coefficients. For the data presented in Box 1, Cohen's d 
was computed as an effect size index for comparison between ther-
mal treatments (Nakagawa & Cuthill, 2007) using the package ‘eff-
size’ (Torchiano, 2020). All the tests were performed using R version 
4.4.1 (R Core Team, 2024). R and Python code source is accessible on 
Zenodo (Souques et al., 2025).

3  |  RESULTS

3.1  |  Matching between temperature input and 
output in PiStoch

The output time series of temperature showed very high correla-
tion with the input time series generated by both the constrained 
random walk (R2 = 0.978) and the sinusoid method (R2 = 0.995) 
(Figure 2), demonstrating the reliability of PiStoch to control 
temperature.

F I G U R E  2  System responsiveness to (a) a stochastic temperature series simulated during 6 days thanks to the constrained random walk, and 
(b) a cyclic stochastic sinusoid simulated during 5 days thanks to the sinusoid method. The black curve corresponds to the output and the red 
curve refers to the input. Panels (c) and (d) show respective regression scatterplots. The input values have been jittered to improve visualization.
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6  |    SOUQUES et al.

3.2  |  Matching between dissolved oxygen 
input and output in PiStoch

The input and the output time series describing the level of dis-
solved oxygen in water showed a very strong correlation (R2 = 0.974) 
(Figure 3), indicating high performance of PiStoch to experimentally 
manipulate this parameter.

4  |  DISCUSSION

We offer a reproducible method able of precisely controlling the 
variance of changing abiotic parameters to more accurately reflect 
environmental stochasticity under experimental conditions.

PiStoch demonstrated high effectiveness in generating and re-
liably applying stochastic time series of environmental parameters 
in indoor mesocosms, representing a significant advancement in 
mimicking natural conditions in experimental studies. The strong 
matching between inputs and outputs time series validates this 
DIY approach, offering researchers a methodological opportunity 
to implement ecologically relevant abiotic conditions, thereby en-
hancing the realism of mesocosms studies. Indeed, experimental 
designs only focussing on stable temperatures or regular sinusoid 
may misestimate organisms' responses in natura, particularly prob-
lematic when attempting to make robust predictions in a changing 

world (Bernhardt et al., 2020; Burggren, 2019; Gerhard et al., 2023; 
Wolkovich et al., 2012).

A primary objective of our study was to develop a cost- effective 
set- up with maximum versatility. The functional Raspberry Pi com-
puter, while being the most expensive component (approximately 
50€), proves highly suitable for this application (Table S1). Depending 
on the coupled accessories, the Raspberry Pi computer presents 
high flexibility in parameter control, allowing multiple experimental 
applications and reuses (Jolles, 2021) with unlimited data storage 
thanks to external disks. It avoids restrictions in memory capacity as 
for HOBO devices, for instance. Moreover, a cloud data recording is 
feasible via VPN connectivity, as we used in both our case studies. 
For instance, the set- up used in the experiments involving fish in 
four mesocosms and plants in five mesocosms (for plants, stochastic 
treatment only) (see Box 1) cost less approximately 1400 € and 1500 
€, respectively (aquarium chiller and cooler included) (Table S1). The 
total system cost varies based on the number of connected meso-
cosms, primarily due to sensor requirements. While each mesocosm 
requires dedicated sensors, control equipment (i.e. Raspberry Pi, 
heater, cooling system) can be shared across multiple units. Thus, 
the more mesocosms are added, the lower the cost per experiment.

The system's adaptability extends beyond our described config-
uration. However, it must be kept in mind that although the con-
trolled water volume of mesocosms is flexible, larger water volumes 
require more powerful (and in fine, expensive) controllers. Similarly, 

F I G U R E  3  (a) System responsiveness during 24 h, to highly stochastic variations in percent of saturation of dissolved oxygen in water 
through time, simulated thanks to the constrained random walk algorithm. The black curve corresponds to the output and the red curve 
refers to the input. Panel (b) shows the associated regression scatterplot. The input values have been jittered to improve visualization.
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    |  7SOUQUES et al.

BOX 1 Biological applications: Responses to thermal stochasticity of the oxygen consumption of freshwater fish 
and of the aerial biomass of pond plants

Background. We propose here two examples of biological applications of the PiStoch set- up. We investigated the responses of both an animal 
and a plant species of aquatic ecosystems to stochastic variations in the thermal conditions of their habitat, using the PiStoch set- up to control 
for water temperatures in mesocosms. We quantified the oxygen consumption associated with thermal stochasticity in a cyprinid fish, the 
spirlin (Alburnoides bipunctatus), and the individual aerial biomass in a macrophyte species, Limosella australis R.Br. (Scrophulariaceae).

Methods. Stochastic time series were generated as presented before using either the constrained random walk algorithm for fishes 
(Figure 2a), or the sinusoid method showing daily variations with unpredictable amplitudes for plants (Figure 2b showing a 5- day 
extract of the total 10- week time series).

For fish, this design aimed to reproduce an extreme climatic event through thermal shocks resulting in significant daily variations. 
For plants, the experimental design aimed to mimic pond ecosystems of the sub- Antarctic region at small scale, to assess changes in 
individual performances in response to extreme thermal events. In both cases, the tested thermal window reflected the ecology of 
the species and temperature data for the catchment area where it is found (Beaufort et al., 2020; Douce et al., 2023). Thus, in both 
cases, organisms were exposed either to a stochastic or to a constant temperature treatment, which were equivalent on average (i.e. 
21°C for fish and 13°C for plants) but with contrasted variances.

Sixteen spirlins were randomly assigned to four 15- L experimental aquariums (two replicate tanks per treatment, four fish per tank) 
containing dechlorinated water (dimensions 35 cm × 20 cm × 25 cm). Each tank featured gravel substrate, Easy Plant Superfish artificial 
vegetation, and cylindrical shelters (diameters of 4 and 9.5 cm). Water quality was preserved through continuous full aeration and filtra-
tion via EHEIM professional 4+ pumps. The fish experienced a balanced photoperiod of 12- h darkness and 12- h light. Their diet consisted 
of defrosted chironomid larvae (Europrix) provided daily, ensuring feeding to satiation excepted the day before the respirometry trials, 
on which they were fasted for 24 h to reach postabsorptive states. The stochastic temperature time series of each tank was controlled 
independently by PiStoch. After 6 days of exposure to the stochastic time series, fish oxygen uptake (MO2) was continuously measured 
overnight for 18 h in individual static respirometers and using an intermittent stop flow respirometry protocol (Chabot et al., 2016; Clark 
et al., 2013; Svendsen et al., 2016) conducted at the mean temperature of the time series. The bridge condition ensured that fish were 
close to 21°C when taken out for respirometry trials. Respirometry data were collected using Oxygen Logger software (Pyroscience, 
Aachen, Germany). Fish Standard Metabolic Rate (SMR), which is exclusively linked to the maintenance of vital functions in ectotherms, 
was calculated as the 10 lowest per cent of all recorded MO2 values.

F I G U R E  4  Responses to stochastic and stable temperatures in two aquatic organisms. (a) A. bipunctatus Standard Metabolic Rate 
(SMR), and (b) L. australis individual aerial biomass.

(Continues
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applying very low contingency and constancy to a controlled param-
eter will be more energy consuming.

The system's versatility enables simultaneous control of mul-
tiple parameters within individual mesocosms, giving concrete ad-
vances for the development of multifactor experimentation. Such 
perspective allows to investigate the additivity or potential complex 
interaction dynamics (i.e. positive or negative covariance) between 
concurrently changing stressors, which could modulate organismal 
responses (Koussoroplis et al., 2017; Koussoroplis & Wacker, 2016; 
Wu et al., 2011). Users should note that each parameter has inherent 
physical constraints independent of the system, such as dissolved 
oxygen's slower response time compared to temperature due to gas 
diffusion lag.

The flexibility of our method is not only inherent to the multi-
ple abiotic parameters controllable by adapting the sensor and the 
controller but also associated to the diversity of time series (i.e. gra-
dient of stochasticity) that can be generated and the opportunity 
of adapting or upgrading our algorithms based on our open- source 
codes. PiStoch accommodates field- recorded data implementation 
as an alternative to algorithm- generated time series. Therefore, real- 
time data transmission from field stations could be a promising and 
time- saving perspective to add more automatization and realism to 
indoors experiments. If real- time data transmission is too restric-
tive, it is possible to use data previously recorded by an electronic 
data- logger from the field as instructions as if a modelled input was 
implemented.

While the Raspberry Pi platform may initially appear challenging 
for users with limited programming experience, we provide all the 
scripts and descriptions necessary to reproduce this set- up very eas-
ily without such skills. As the use of Large Language Models (LLM) is 
now easily accessible, we encourage the use of artificial intelligence 
to help beginners with Python programming or electronic set- ups. 
Using a Raspberry Pi platform connected to an open access Python 

program also offers various perspectives (e.g. a graphical user inter-
face—GUI, use of a server) driven by the needs of the users' commu-
nity and contributing to the upgradeable aspect of our system.

While our focus has been on aquatic ecosystems, the ‘kernel 
system’ (i.e. control centre, nano- computer and operating system) 
remains applicable to terrestrial mesocosms with appropriate mod-
ifications (Stewart et al., 2013). If affordable, adapting a wine cellar 
or a greenhouse into a hermetic terrestrial mesocosm could offer a 
solution to precisely control abiotic parameters in non- aquatic ex-
perimental mesocosms using PiStoch.

In conclusion, PiStoch demonstrates potential for integration 
with diverse mesocosm configurations, encompassing multidisci-
plinary scientific questions. It represents a cost- effective alternative 
to commercial systems while maintaining high efficiency for physio-
logical and ecological studies. We hope this system will support the 
development of experimental protocols incorporating environmen-
tal parameters with stochastic variations. In an era of global changes, 
stimulating our knowledge of organisms' responses to such varia-
tions is crucial to refine predictions about species and ecosystems 
persistence and adaptability to an increasingly unpredictable world.
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Fifteen L. australis individuals were cultivated separately in square pots replicates (10 × 10 × 11 cm) distributed between 10 mesocosms 
(of which five are controlled by PiStoch) filled with 42 L of water (dimensions 78.7 cm × 58.6 cm × 15 cm). A recirculating water pump 
(EHEIM Compact ON 300) homogenized temperature distribution. Cultures were conducted on homogenized mixture of 50% of sand 
and 50% of compost (N: 250 g.m−3, P2O5: 120 g.m−3, K2O: 80 g.m−3) with 12 h/12 h light regime. Mesocosm water was entirely renewed 
one a week to avoid nutrient leaching from the pot substrate. After 10 weeks of clonal growth under exposure to thermal treatments, 
three newly produced individuals per replicate were randomly harvested and aerial biomass was measured after drying them for 48 h in 
oven at 65°C. All plants were cleaned before any measurement.

Results. Results revealed a decrease in studied response variables in organisms exposed to stochastic temperatures compared to 
stable ones. Fishes exposed to fluctuating temperatures (Figure 4a) exhibited significantly lower SMR (linear model, F1,14 = 11.726, 
p = 0.004, Cohen's d = 1.55, 95% CI = [0.323; 2.766]) than fishes that had experienced the constant temperature. Similarly, in the plant 
species L. australis (Figure 4b), individuals exhibited a lower aerial biomass under fluctuating temperatures than under constant ones 
(linear mixed model, �2

1
 = 7.74, p = 0.005, Cohen's d = 0.83, 95% CI = [0.199; 1.454]).

Conclusion. In the two biological applications of PiStoch tested, thermal stochasticity significantly impacted physiological or morpho-
logical traits across distant taxa, suggesting broader implications for aquatic ecosystem responses to temperature variations.

Box 1 (Continued)

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.70094 by ${individualU
ser.givenN

am
es} ${individualU

ser.surnam
e} - M

cm
aster U

niversity L
ibrary , W

iley O
nline L

ibrary on [08/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  9SOUQUES et al.

ACKNOWLEDG EMENTS
We thank Angeline Clair, Laetitia Averty and Candice Bastianini 
(ACSED platform) for their technical assistance and for tak-
ing care of fish in the animal care facility of the Claude Bernard 
University. We thank Léa Péric and Flavie Dujardin for their help 
during the experiments involving fish. This work was supported 
by the Institut Polaire Français (project 136 SUBANTECO), the 
ANR PONDS project (ANR- 21- CE02- 0003- 01, JCJC call 2021), 
and the FR BioEEnViS (Heatwaves_FR grant) and Agence de 
l'Eau-  Rhône Mediterranée Corse (grants AE- RMC Heatwaves and 
BiodiverSaône programs).

CONFLIC T OF INTERE S T S TATEMENT
The authors declare no conflict of interest.

PEER RE VIE W
The peer review history for this article is available at https:// www. 
webof scien ce. com/ api/ gatew ay/ wos/ peer-  review/ 10. 1111/ 2041-  
210X. 70094 .

DATA AVAIL ABILIT Y S TATEMENT
The datasets, Python and R scripts for the analysis, guidance for 
non- technical users and set- up controls described herein are availa-
ble on Zenodo https:// doi. org/ 10. 5281/ zenodo. 15480013 (Souques 
et al., 2025).

S TATE OF INCLUSION
We conducted the study exclusively within a single regional context. 
We perhaps constrained our research by limiting intellectual diver-
sity and missed opportunities to incorporate perspectives, insights, 
and alternative methodological approaches that external stakehold-
ers might have contributed.

ORCID
Chloé Souques  https://orcid.org/0009-0004-4482-5829 
Jérémy Bacon  https://orcid.org/0009-0001-2406-2287 
Ludovic Guillard  https://orcid.org/0009-0005-4383-5459 
Pauline Eymard- Dauphin  https://orcid.
org/0009-0004-4910-4895 
Loïc Teulier  https://orcid.org/0000-0001-7779-7634 
François- Xavier Dechaume- Moncharmont  https://orcid.
org/0000-0001-7607-8224 
Anne- Kristel Bittebiere  https://orcid.org/0000-0002-9882-968X 
Yann Voituron  https://orcid.org/0000-0003-0572-7199 

R E FE R E N C E S
Abrahms, B., Aikens, E. O., Armstrong, J. B., Deacy, W. W., Kauffman, M. 

J., & Merkle, J. A. (2021). Emerging perspectives on resource track-
ing and animal movement ecology. Trends in Ecology & Evolution, 
36(4), 308–320. https:// doi. org/ 10. 1016/j. tree. 2020. 10. 018

Arnoldini, M., Mostowy, R., Bonhoeffer, S., & Ackermann, M. (2012). 
Evolution of stress response in the face of unreliable environmen-
tal signals. PLoS Computational Biology, 8(8), e1002627. https:// doi. 
org/ 10. 1371/ journ al. pcbi. 1002627

Beaufort, I. U., Moatar, F., Sauquet, E., & Magand, C. (2020). Projet TIGRE—
Thermie en riviere: Analyse géostatistique et description de régime: 
Application à l'échelle de la France. INRAE UR RiverLy, Université de 
Tours GéHCO.

Beissinger, S. R., & Gibbs, J. P. (1993). Are variable environments stochas-
tic? A review of methods to quantify environmental predictability. 
In J. Yoshimura & C. W. Clark (Eds.), Adaptation in stochastic envi-
ronments (Vol. 98, pp. 132–146). Springer. https:// doi. org/ 10. 1007/ 
978-  3-  642-  51483 -  8_ 7

Bernhardt, J. R., O'Connor, M. I., Sunday, J. M., & Gonzalez, A. (2020). 
Life in fluctuating environments. Philosophical Transactions of the 
Royal Society, B: Biological Sciences, 375(1814), 20190454. https:// 
doi. org/ 10. 1098/ rstb. 2019. 0454

Bernhardt, J. R., Sunday, J. M., Thompson, P. L., & O'Connor, M. I. (2018). 
Nonlinear averaging of thermal experience predicts population 
growth rates in a thermally variable environment. Proceedings of the 
Royal Society B: Biological Sciences, 285(1886), 20181076. https:// 
doi. org/ 10. 1098/ rspb. 2018. 1076

Bozinovic, F., Bastías, D., Boher, F., Clavijo- Baquet, S., Estay, S., & 
Angilletta, M. (2011). The mean and variance of environmental tem-
perature interact to determine physiological tolerance and fitness. 
Physiological and Biochemical Zoology, 84, 543–552. https:// doi. org/ 
10. 1086/ 662551

Braz- Mota, S., Ollerhead, K. M., Lamarre, S. G., Almeida- Val, V. M. F., 
Val, A. L., & MacCormack, T. J. (2024). Acclimation to constant and 
fluctuating temperatures promotes distinct metabolic responses 
in Arctic char (Salvelinus alpinus). Journal of Experimental Biology, 
227(21), jeb249475. https:// doi. org/ 10. 1242/ jeb. 249475

Burggren, W. W. (2019). Inadequacy of typical physiological experi-
mental protocols for investigating consequences of stochastic 
weather events emerging from global warming. American Journal 
of Physiology. Regulatory, Integrative and Comparative Physiology, 
316(4), R318–R322. https:// doi. org/ 10. 1152/ ajpre gu. 00307. 2018

Chabot, D., Steffensen, J. F., & Farrell, A. P. (2016). The determination of 
standard metabolic rate in fishes: Measuring smr in fishes. Journal 
of Fish Biology, 88(1), 81–121. https:// doi. org/ 10. 1111/ jfb. 12845 

Chefaoui, R. M., Martínez, B. D.- C., & Viejo, R. M. (2024). Temporal vari-
ability of sea surface temperature affects marine macrophytes 
range retractions as well as gradual warming. Scientific Reports, 
14(1), 14206. https:// doi. org/ 10. 1038/ s4159 8-  024-  64745 -  7

Cicchino, A. S., Ghalambor, C. K., Forester, B. R., Dunham, J. D., & Funk, 
W. C. (2024). Greater plasticity in CTmax with increased climate 
variability among populations of tailed frogs. Proceedings of the 
Royal Society B: Biological Sciences, 291(2034), 20241628. https:// 
doi. org/ 10. 1098/ rspb. 2024. 1628

Clark, T. D., Sandblom, E., & Jutfelt, F. (2013). Aerobic scope measure-
ments of fishes in an era of climate change: Respirometry, relevance 
and recommendations. Journal of Experimental Biology, 216(15), 
2771–2782. https:// doi. org/ 10. 1242/ jeb. 084251

Colinet, H., Sinclair, B. J., Vernon, P., & Renault, D. (2015). Insects in fluc-
tuating thermal environments. Annual Review of Entomology, 60(1), 
123–140. https:// doi. org/ 10. 1146/ annur ev-  ento-  01081 4-  021017

Cornwall, C. E., Hepburn, C. D., McGraw, C. M., Currie, K. I., Pilditch, C. 
A., Hunter, K. A., Boyd, P. W., & Hurd, C. L. (2013). Diurnal fluctu-
ations in seawater pH influence the response of a calcifying mac-
roalga to ocean acidification. Proceedings of the Royal Society B: 
Biological Sciences, 280(1772), 20132201. https:// doi. org/ 10. 1098/ 
rspb. 2013. 2201

Dobry, E., Schoeniger, G., & Nutile, S. A. (2021). The effect of salinity 
fluctuation in freshwater streams on the fecundity of post- diapause 
Chironomus dilutus. Ecotoxicology, 30(2), 224–230. https:// doi. org/ 
10. 1007/ s1064 6-  020-  02338 -  6

Douce, P., Mermillod- Blondin, F., Simon, L., Dolédec, S., Eymar- Dauphin, 
P., Renault, D., Sulmon, C., Vallier, F., & Bittebiere, A.- K. (2023). 
Biotic and abiotic drivers of aquatic plant communities in shallow 

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.70094 by ${individualU
ser.givenN

am
es} ${individualU

ser.surnam
e} - M

cm
aster U

niversity L
ibrary , W

iley O
nline L

ibrary on [08/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.70094
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.70094
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.70094
https://doi.org/10.5281/zenodo.15480013
https://orcid.org/0009-0004-4482-5829
https://orcid.org/0009-0004-4482-5829
https://orcid.org/0009-0001-2406-2287
https://orcid.org/0009-0001-2406-2287
https://orcid.org/0009-0005-4383-5459
https://orcid.org/0009-0005-4383-5459
https://orcid.org/0009-0004-4910-4895
https://orcid.org/0009-0004-4910-4895
https://orcid.org/0009-0004-4910-4895
https://orcid.org/0000-0001-7779-7634
https://orcid.org/0000-0001-7779-7634
https://orcid.org/0000-0001-7607-8224
https://orcid.org/0000-0001-7607-8224
https://orcid.org/0000-0001-7607-8224
https://orcid.org/0000-0002-9882-968X
https://orcid.org/0000-0002-9882-968X
https://orcid.org/0000-0003-0572-7199
https://orcid.org/0000-0003-0572-7199
https://doi.org/10.1016/j.tree.2020.10.018
https://doi.org/10.1371/journal.pcbi.1002627
https://doi.org/10.1371/journal.pcbi.1002627
https://doi.org/10.1007/978-3-642-51483-8_7
https://doi.org/10.1007/978-3-642-51483-8_7
https://doi.org/10.1098/rstb.2019.0454
https://doi.org/10.1098/rstb.2019.0454
https://doi.org/10.1098/rspb.2018.1076
https://doi.org/10.1098/rspb.2018.1076
https://doi.org/10.1086/662551
https://doi.org/10.1086/662551
https://doi.org/10.1242/jeb.249475
https://doi.org/10.1152/ajpregu.00307.2018
https://doi.org/10.1111/jfb.12845
https://doi.org/10.1038/s41598-024-64745-7
https://doi.org/10.1098/rspb.2024.1628
https://doi.org/10.1098/rspb.2024.1628
https://doi.org/10.1242/jeb.084251
https://doi.org/10.1146/annurev-ento-010814-021017
https://doi.org/10.1098/rspb.2013.2201
https://doi.org/10.1098/rspb.2013.2201
https://doi.org/10.1007/s10646-020-02338-6
https://doi.org/10.1007/s10646-020-02338-6


10  |    SOUQUES et al.

pools and wallows on the sub- Antarctic Iles Kerguelen. Polar Biology, 
46(4), 303–318. https:// doi. org/ 10. 1007/ s0030 0-  023-  03122 -  y

Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., 
& Mearns, L. O. (2000). Climate extremes: Observations, modeling, 
and impacts. Science, 289(5487), 2068–2074. https:// doi. org/ 10. 
1126/ scien ce. 289. 5487. 2068

Ern, R., & Jutfelt, F. (2024). The OptoReg system: A simple and inexpen-
sive solution for regulating water oxygen. Conservation Physiology, 
12(1), coae024. https:// doi. org/ 10. 1093/ conph ys/ coae024

Foray, V., Desouhant, E., & Gibert, P. (2014). The impact of thermal fluc-
tuations on reaction norms in specialist and generalist parasitic 
wasps. Functional Ecology, 28(2), 411–423. https:// doi. org/ 10. 1111/ 
1365- 2435. 12171 

Franch- Gras, L., García- Roger, E. M., Serra, M., & José Carmona, M. 
(2017). Adaptation in response to environmental unpredictability. 
Proceedings of the Royal Society B: Biological Sciences, 284(1868), 
20170427. https:// doi. org/ 10. 1098/ rspb. 2017. 0427

Fujiwara, M. (2009). Environmental stochasticity. In Encyclopedia of life 
sciences (1st ed.). Wiley. https:// doi. org/ 10. 1002/ 97804 70015 902. 
a0021220

Gerhard, M., Koussoroplis, A.- M., Raatz, M., Pansch, C., Fey, S. B., 
Vajedsamiei, J., Calderó- Pascual, M., Cunillera- Montcusí, D., 
Juvigny- Khenafou, N. P. D., Polazzo, F., Thomas, P. K., Symons, 
C. C., Beklioğlu, M., Berger, S. A., Chefaoui, R. M., Ger, K. A., 
Langenheder, S., Nejstgaard, J. C., Ptacnik, R., & Striebel, M. 
(2023). Environmental variability in aquatic ecosystems: Avenues 
for future multifactorial experiments. Limnology and Oceanography 
Letters, 8(2), 247–266. https:// doi. org/ 10. 1002/ lol2. 10286 

Greenspan, S. E., Morris, W., Warburton, R., Edwards, L., Duffy, R., Pike, 
D. A., Schwarzkopf, L., & Alford, R. A. (2016). Low- cost fluctuating- 
temperature chamber for experimental ecology. Methods in Ecology 
and Evolution, 7(12), 1567–1574. https:// doi. org/ 10. 1111/ 2041-  
210X. 12619 

Guadayol, Ò., Silbiger, N. J., Donahue, M. J., & Thomas, F. I. M. (2014). 
Patterns in temporal variability of temperature, oxygen and pH 
along an environmental gradient in a coral reef. PLoS One, 9(1), 
e85213. https:// doi. org/ 10. 1371/ journ al. pone. 0085213

Helbling, E. W., Villafañe, V. E., Narvarte, M. A., Burgueño, G. M., Saad, 
J. F., González, R. A., & Cabrerizo, M. J. (2024). The impact of ex-
treme weather events exceeds those due to global- change driv-
ers on coastal phytoplankton assemblages. Science of the Total 
Environment, 918, 170644. https:// doi. org/ 10. 1016/j. scito tenv. 
2024. 170644

Ibáñez, I., Gornish, E. S., Buckley, L., Debinski, D. M., Hellmann, J., 
Helmuth, B., HilleRisLambers, J., Latimer, A. M., Miller- Rushing, A. 
J., & Uriarte, M. (2013). Moving forward in global- change ecology: 
Capitalizing on natural variability. Ecology and Evolution, 3(1), 170–
181. https:// doi. org/ 10. 1002/ ece3. 433

Jenny, J.- P., Normandeau, A., Francus, P., Taranu, Z. E., Gregory- Eaves, I., 
Lapointe, F., Jautzy, J., Ojala, A. E. K., Dorioz, J.- M., Schimmelmann, 
A., & Zolitschka, B. (2016). Urban point sources of nutrients were 
the leading cause for the historical spread of hypoxia across 
European lakes. Proceedings of the National Academy of Sciences of 
the United States of America, 113(45), 12655–12660. https:// doi. 
org/ 10. 1073/ pnas. 16054 80113 

Jolles, J. W. (2021). Broad- scale applications of the Raspberry Pi: A re-
view and guide for biologists. Methods in Ecology and Evolution, 
12(9), 1562–1579. https:// doi. org/ 10. 1111/ 2041-  210X. 13652 

Kingsolver, J. G., Higgins, J. K., & Augustine, K. E. (2015). Fluctuating 
temperatures and ectotherm growth: Distinguishing non- linear 
and time- dependent effects. Journal of Experimental Biology, 218, 
2218–2225. https:// doi. org/ 10. 1242/ jeb. 120733

Koussoroplis, A.- M., Pincebourde, S., & Wacker, A. (2017). Understanding 
and predicting physiological performance of organisms in fluctuat-
ing and multifactorial environments. Ecological Monographs, 87(2), 
178–197. https:// doi. org/ 10. 1002/ ecm. 1247

Koussoroplis, A.- M., & Wacker, A. (2016). Covariance modulates the 
effect of joint temperature and food variance on ectotherm life- 
history traits. Ecology Letters, 19(2), 143–152. https:// doi. org/ 10. 
1111/ ele. 12546 

Lovegrove, B. G. (2000). Daily heterothermy in mammals: Coping with 
unpredictable environments. In G. Heldmaier & M. Klingenspor 
(Eds.), Life in the cold (pp. 29–40). Springer. https:// doi. org/ 10. 1007/ 
978-  3-  662-  04162 -  8_ 3

Massetti, L. (2020). Drivers of artificial light at night variability in urban, 
rural and remote areas. Journal of Quantitative Spectroscopy and 
Radiative Transfer, 255, 107250. https:// doi. org/ 10. 1016/j. jqsrt. 
2020. 107250

Massey, M. D., Fredericks, M. K., Malloy, D., Arif, S., & Hutchings, J. A. 
(2022). Differential reproductive plasticity under thermal variabil-
ity in a freshwater fish (Danio rerio). Proceedings of the Royal Society 
B: Biological Sciences, 289(1982), 20220751. https:// doi. org/ 10. 
1098/ rspb. 2022. 0751

Morash, A. J., Neufeld, C., MacCormack, T. J., & Currie, S. (2018). The im-
portance of incorporating natural thermal variation when evaluating 
physiological performance in wild species. Journal of Experimental 
Biology, 221(14), jeb164673. https:// doi. org/ 10. 1242/ jeb. 164673

Nakagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and 
statistical significance: A practical guide for biologists. Biological 
Reviews, 82(4), 591–605. https:// doi. org/ 10. 1111/j. 1469-  185X. 
2007. 00027. x

Noe, G. B. (2002). Temporal variability matters: Effects of constant 
vs. varying moisture and salinity on germination. Ecological 
Monographs, 72(3), 427–443. https:// doi. org/ 10. 2307/ 3100098

Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. 
A., Alexander, L. V., Benthuysen, J. A., Feng, M., Sen Gupta, A., 
Hobday, A. J., Holbrook, N. J., Perkins- Kirkpatrick, S. E., Scannell, H. 
A., Straub, S. C., & Wernberg, T. (2018). Longer and more frequent 
marine heatwaves over the past century. Nature Communications, 
9(1), 1324. https:// doi. org/ 10. 1038/ s4146 7-  018-  03732 -  9

Pettersen, A. K., Nord, A., While, G. M., & Uller, T. (2024). How do fluc-
tuating temperatures alter the cost of development? Functional 
Ecology, 38(1), 114–125. https:// doi. org/ 10. 1111/ 1365-  2435. 14450 

Pisano, O. M., Kuparinen, A., & Hutchings, J. A. (2019). Cyclical and sto-
chastic thermal variability affects survival and growth in brook 
trout. Journal of Thermal Biology, 84, 221–227. https:// doi. org/ 10. 
1016/j. jther bio. 2019. 07. 012

R Core Team. (2024). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing.

Reed, T. E., Waples, R. S., Schindler, D. E., Hard, J. J., & Kinnison, M. T. 
(2010). Phenotypic plasticity and population viability: The impor-
tance of environmental predictability. Proceedings of the Royal 
Society B: Biological Sciences, 277(1699), 3391–3400. https:// doi. 
org/ 10. 1098/ rspb. 2010. 0771

Riotte- Lambert, L., & Matthiopoulos, J. (2020). Environmental predictability 
as a cause and consequence of animal movement. Trends in Ecology & 
Evolution, 35(2), 163–174. https:// doi. org/ 10. 1016/j. tree. 2019. 09. 009

Roughgarden, J. (1975). A simple model for population dynamics in sto-
chastic environments. The American Naturalist, 109(970), 713–736. 
https:// doi. org/ 10. 1086/ 283039

Salinas, S., Irvine, S. E., Schertzing, C. L., Golden, S. Q., & Munch, S. B. 
(2019). Trait variation in extreme thermal environments under con-
stant and fluctuating temperatures. Philosophical Transactions of the 
Royal Society B: Biological Sciences, 374(1768), 20180177. https:// 
doi. org/ 10. 1098/ rstb. 2018. 0177

Sampaio, E., Santos, C., Rosa, I. C., Ferreira, V., Pörtner, H.- O., Duarte, C. M., 
Levin, L. A., & Rosa, R. (2021). Impacts of hypoxic events surpass those 
of future ocean warming and acidification. Nature Ecology & Evolution, 
5(3), 311–321. https:// doi. org/ 10. 1038/ s4155 9-  020-  01370 -  3

Shoemaker, L. G., Sullivan, L. L., Donohue, I., Cabral, J. S., Williams, R. 
J., Mayfield, M. M., Chase, J. M., Chu, C., Harpole, W. S., Huth, 
A., HilleRisLambers, J., James, A. R. M., Kraft, N. J. B., May, F., 

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.70094 by ${individualU
ser.givenN

am
es} ${individualU

ser.surnam
e} - M

cm
aster U

niversity L
ibrary , W

iley O
nline L

ibrary on [08/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1007/s00300-023-03122-y
https://doi.org/10.1126/science.289.5487.2068
https://doi.org/10.1126/science.289.5487.2068
https://doi.org/10.1093/conphys/coae024
https://doi.org/10.1111/1365-2435.12171
https://doi.org/10.1111/1365-2435.12171
https://doi.org/10.1098/rspb.2017.0427
https://doi.org/10.1002/9780470015902.a0021220
https://doi.org/10.1002/9780470015902.a0021220
https://doi.org/10.1002/lol2.10286
https://doi.org/10.1111/2041-210X.12619
https://doi.org/10.1111/2041-210X.12619
https://doi.org/10.1371/journal.pone.0085213
https://doi.org/10.1016/j.scitotenv.2024.170644
https://doi.org/10.1016/j.scitotenv.2024.170644
https://doi.org/10.1002/ece3.433
https://doi.org/10.1073/pnas.1605480113
https://doi.org/10.1073/pnas.1605480113
https://doi.org/10.1111/2041-210X.13652
https://doi.org/10.1242/jeb.120733
https://doi.org/10.1002/ecm.1247
https://doi.org/10.1111/ele.12546
https://doi.org/10.1111/ele.12546
https://doi.org/10.1007/978-3-662-04162-8_3
https://doi.org/10.1007/978-3-662-04162-8_3
https://doi.org/10.1016/j.jqsrt.2020.107250
https://doi.org/10.1016/j.jqsrt.2020.107250
https://doi.org/10.1098/rspb.2022.0751
https://doi.org/10.1098/rspb.2022.0751
https://doi.org/10.1242/jeb.164673
https://doi.org/10.1111/j.1469-185X.2007.00027.x
https://doi.org/10.1111/j.1469-185X.2007.00027.x
https://doi.org/10.2307/3100098
https://doi.org/10.1038/s41467-018-03732-9
https://doi.org/10.1111/1365-2435.14450
https://doi.org/10.1016/j.jtherbio.2019.07.012
https://doi.org/10.1016/j.jtherbio.2019.07.012
https://doi.org/10.1098/rspb.2010.0771
https://doi.org/10.1098/rspb.2010.0771
https://doi.org/10.1016/j.tree.2019.09.009
https://doi.org/10.1086/283039
https://doi.org/10.1098/rstb.2018.0177
https://doi.org/10.1098/rstb.2018.0177
https://doi.org/10.1038/s41559-020-01370-3


    |  11SOUQUES et al.

Muthukrishnan, R., Satterlee, S., Taubert, F., Wang, X., Wiegand, 
T., … Abbott, K. C. (2020). Integrating the underlying structure of 
stochasticity into community ecology. Ecology, 101(2), e02922. 
https:// doi. org/ 10. 1002/ ecy. 2922

Slein, M. A., Bernhardt, J. R., O'Connor, M. I., & Fey, S. B. (2023). Effects 
of thermal fluctuations on biological processes: A meta- analysis 
of experiments manipulating thermal variability. Proceedings of the 
Royal Society B: Biological Sciences, 290(1992), 20222225. https:// 
doi. org/ 10. 1098/ rspb. 2022. 2225

Smucker, N. J., Beaulieu, J. J., Nietch, C. T., & Young, J. L. (2021). Increasingly 
severe cyanobacterial blooms and deep water hypoxia coincide with 
warming water temperatures in reservoirs. Global Change Biology, 
27(11), 2507–2519. https:// doi. org/ 10. 1111/ gcb. 15618 

Souques, C., Bacon, J., Guillard, L., Eymard- Dauphin, P., Teulier, L., 
Dechaume- Moncharmont, F. X., Bittebiere, A. K., & Voituron, Y. 
(2025). All- in- one, versatile and low- cost experimental setup to 
implement environmental stochasticity in mesocosms (PiStoch). 
https:// doi. org/ 10. 5281/ zenodo. 15480013

Stewart, R. I. A., Dossena, M., Bohan, D. A., Jeppesen, E., Kordas, R. 
L., Ledger, M. E., Meerhoff, M., Moss, B., Mulder, C., Shurin, J. B., 
Suttle, B., Thompson, R., Trimmer, M., & Woodward, G. (2013). 
Mesocosm experiments as a tool for ecological climate- change re-
search. Advances in Ecological Research, 48, 71–181. https:// doi. org/ 
10. 1016/ B978-  0-  12-  41719 9-  2. 00002 -  1

Svendsen, M. B. S., Bushnell, P. G., & Steffensen, J. F. (2016). Design and setup 
of intermittent- flow respirometry system for aquatic organisms. Journal 
of Fish Biology, 88(1), 26–50. https:// doi. org/ 10. 1111/ jfb. 12797 

Torchiano, M. (2020). effsize: Efficient effect size computation. R pack-
age version 0.8.1. https:// CRAN.R- proje ct. org/ packa ge= effsize

Vasseur, D. A., DeLong, J. P., Gilbert, B., Greig, H. S., Harley, C. D. G., 
McCann, K. S., Savage, V., Tunney, T. D., & O'Connor, M. I. (2014). 
Increased temperature variation poses a greater risk to species than 
climate warming. Proceedings of the Royal Society B: Biological Sciences, 
281(1779), 20132612. https:// doi. org/ 10. 1098/ rspb. 2013. 2612

Verdier, B., Jouanneau, I., Simonnet, B., Rabin, C., Van Dooren, T. J. M., 
Delpierre, N., Clobert, J., Abbadie, L., Ferrière, R., & Le Galliard, J.- F. 
(2014). Climate and atmosphere simulator for experiments on eco-
logical systems in changing environments. Environmental Science & 
Technology, 48(15), 8744–8753. https:// doi. org/ 10. 1021/ es405 467s

Verheyen, J., & Stoks, R. (2019). Temperature variation makes an ecto-
therm more sensitive to global warming unless thermal evolution 
occurs. Journal of Animal Ecology, 88(4), 624–636. https:// doi. org/ 
10. 1111/ 1365-  2656. 12946 

von Schmalensee, L. (2023). How to generate accurate continuous ther-
mal regimes from sparse but regular temperature measurements. 
Methods in Ecology and Evolution, 14(5), 1208–1216. https:// doi. org/ 
10. 1111/ 2041-  210X. 14092 

Wolkovich, E. M., Cook, B. I., Allen, J. M., Crimmins, T. M., Betancourt, J. 
L., Travers, S. E., Pau, S., Regetz, J., Davies, T. J., Kraft, N. J. B., Ault, T. 
R., Bolmgren, K., Mazer, S. J., McCabe, G. J., McGill, B. J., Parmesan, 
C., Salamin, N., Schwartz, M. D., & Cleland, E. E. (2012). Warming 
experiments underpredict plant phenological responses to climate 
change. Nature, 485(7399), 494–497. https:// doi. org/ 10. 1038/ natur 
e11014

Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J., & Hungate, B. A. (2011). 
Responses of terrestrial ecosystems to temperature and precipita-
tion change: A meta- analysis of experimental manipulation. Global 
Change Biology, 17(2), 927–942. https:// doi. org/ 10. 1111/j. 1365-  
2486. 2010. 02302. x

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Appendix S1: Robustness test.
Figure S1: Robustness testing, with the input (red curve) switching 
from 10°C to 20°C at increasing frequency (every 120, 60, 30, 15, 8, 
4 and 2 min), and the corresponding output recorded (black curve).
Appendix S2: Material used and price.
Table S1: List of used materials. Prices reflect those we paid during 
the experiments, they are subject to change since then. * While the 
bubbler can be replaced with a pure dioxygen bottle (see Optoreg 
(Ern & Jutfelt, 2024)), this alternative requires additional safety 
measures due to fire and explosion risks. ** For setups with multiple 
mesocosms, multiple solenoid valves (negative pathway) can be 
connected to the nitrogen bottle.

How to cite this article: Souques, C., Bacon, J., Guillard, L., 
Eymard- Dauphin, P., Teulier, L., Dechaume- Moncharmont, 
F.-X., Bittebiere, A.-K., & Voituron, Y. (2025). All- in- one, 
versatile and low- cost experimental set- up to implement 
environmental stochasticity in mesocosms (PiStoch). Methods 
in Ecology and Evolution, 00, 1–11. https://doi.
org/10.1111/2041-210X.70094

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.70094 by ${individualU
ser.givenN

am
es} ${individualU

ser.surnam
e} - M

cm
aster U

niversity L
ibrary , W

iley O
nline L

ibrary on [08/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/ecy.2922
https://doi.org/10.1098/rspb.2022.2225
https://doi.org/10.1098/rspb.2022.2225
https://doi.org/10.1111/gcb.15618
https://doi.org/10.5281/zenodo.15480013
https://doi.org/10.1016/B978-0-12-417199-2.00002-1
https://doi.org/10.1016/B978-0-12-417199-2.00002-1
https://doi.org/10.1111/jfb.12797
https://cran.r-project.org/package=effsize
https://doi.org/10.1098/rspb.2013.2612
https://doi.org/10.1021/es405467s
https://doi.org/10.1111/1365-2656.12946
https://doi.org/10.1111/1365-2656.12946
https://doi.org/10.1111/2041-210X.14092
https://doi.org/10.1111/2041-210X.14092
https://doi.org/10.1038/nature11014
https://doi.org/10.1038/nature11014
https://doi.org/10.1111/j.1365-2486.2010.02302.x
https://doi.org/10.1111/j.1365-2486.2010.02302.x
https://doi.org/10.1111/2041-210X.70094
https://doi.org/10.1111/2041-210X.70094


   
 

1 
 

Supporting Information  1 

Supporting information can be found online at the end of the article. 2 

Appendix S1: Robustness test  3 

In the two modelled and implemented temperature stochastic time series (Fig. 2), the 4 

temperature variation is largely auto-correlated, with small differences in temperatures 5 

between two consecutive time steps. We also assessed the robustness of PiStoch by 6 

deliberately simulating intense thermal conditions, involving a very inconstant time series and 7 

in which the target temperature switched between 10°C and 20°C at increasing frequency 8 

(every 120, 60, 30, 15, 8, 4 and 2 minutes). The conditions simulated in this test are beyond 9 

normal operational capacity. Our aim was to assess the limits of heating and cooling abilities 10 

of our system, until it is unable to cope with extreme regime of temperature change in 11 

freshwater. We measured the response time as the average time to reach the target 12 

temperature after each switch. This experiment lasted for 24 hours. 13 

We used the same sensor and controller modules as for the two temperature stochastic time 14 

series (see Table S1). As for regulators, we used a submersible heater TETRA HT 300W 15 

(Aquastore, ref T710940) and a TK2000 (TECO, Ravenna, Italia) for the positive and negative 16 

pathway respectively. We used a 52L glass tank as mesocosm. The mean heating duration 17 

(from 10°C to 20°C) was 102.7 +/- 2.1 minutes and the mean cooling duration (from 10°C to 18 

20°C) corresponded to 98.3 +/- 1.6 minutes (Fig.S1). The shorter the period, the more difficult 19 

it was to reach boundary values due to the power of the regulator devices used. 20 

  21 
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 22 

Figure S1. Robustness testing, with the input (red curve) switching from 10°C to 20°C at 23 

increasing frequency (every 120, 60, 30, 15, 8, 4 and 2 minutes), and the corresponding output 24 

recorded (black curve).  25 
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Appendix S2: Materiel used and price 29 

Table S1: List of used materials. Prices reflect those we paid during the experiments, they are 30 

subject to change since then. * While the bubbler can be replaced with a pure dioxygen bottle 31 

(see Optoreg (Ern & Jutfelt, 2024)), this alternative requires additional safety measures due 32 

to fire and explosion risks. ** For setups with multiple mesocosms, multiple solenoid valves 33 

(negative pathway) can be connected to the nitrogen bottle 34 

 35 

 36 

 37 

Item Price (€/unit) Quantity Item Price (€/unit) Quantity

S
e

n
s

o
r

Numerical temperature sensor DS18B20 (Analog 

Devices, Wilmington, USA )
12 1 per mesocosm

Optod (Aqualabo, Champigny-sur-Marne, 

France )
1030 1 per mesocosm

Raspberry Pi 3 Model B V1.2 (Mouser Electronics, 

ref:RASPBERRYPI3-MODB-1GB 102110299 3055 

RP2040TR7 )

32 1 per case study

Raspberry Pi 3 Model B V1.2 (Mouser 

Electronics, ref:RASPBERRYPI3-MODB-

1GB 102110299 3055 RP2040TR7 )

32 1

Power supply 220v AC/ 5v DC 12W (RS online, ref: 

206-4917 )
10 1 per Raspberry Pi

Power supply 220v AC/ 5v DC 12W (RS 

online, ref: 206-4917 )
10 1 per Raspberry Pi

SD card 32 Go (SanDisk, Milpitas, USA ) 10 1 per Raspberry Pi SD card 32 Go (SanDisk, Milpitas, USA ) 10 1 per Raspberry Pi

Relay card TTL-RELAY16 (Seeit, Clermont-Ferrand, 

France )
33 1 per Raspberry Pi

Relay card TTL-RELAY16 (Seeit, Clermont-

Ferrand, France )
33 1 per Raspberry Pi

Interface bridge DS9490R (Analog Devices, 

Wilmington, USA )
43 1 per Raspberry Pi  Arduino Uno (RS online, ref: 715-4081 ) 20 1 per Raspberry Pi

R
e

g
u

la
to

r
; 

p
o

s
it

iv
e

 p
a

th
w

a
y

Submersible heater EHEIM thermocontrol 25W 

(Deizisau, Germany ) [Stochastic time series] // 

Submersible heater EHEIM thermocontrol 75W 

(Deizisau, Germany ) [Stochastic time series 

incorporating a cyclic pattern]

20

1 per mesocosm [4 heaters for 

freshwater fishes//5 heaters for 

macrophytes]

Air pump SUNSUN CT-404 680 L/H* 

(Aquastore, ref:CT-404 )
23 1 per mesocosm

Aquarium chiller TK500 (TECO, Ravenna, Italy ) 800 1 per case study
Solenoid valve 24v DC VDW22LA (SMC, 

Tokyo, Japan )
20 1 per mesocosm

Cold water tank 120 - 114L (IGLOO, Katy, USA ) 120 1 per case study
Power supply RS PRO 220v AC/ 24v DC 

12W (RS online, ref :175-3306 )
10 1 per solenoid valve

Copper pipes 2m Ø12mm roller (Castorama, 

ref:3506465167557 )
23

1m per mesocosm [2 rollers for 

freshwater fishes/3 rollers for 

macrophytes]

Nitrogen source**(Air liquide, Paris, 

France)
Variable

1 per experiment (variable 

consumption)

Water pump EHEIM Compact On 300 (Deizisau, 

Germany ) // Water pump EHEIM Compact On 1000 

(Deizisau, Germany )

18 // 35

1 per mesocosm  [4 pumps for 

freshwater fishes/5 pumps for 

macrophytes]

PVC pipes 25m Ø12,5mm roller (Castorama, 

ref:5059340349701 )
25

4m per mesocosm [1 roller for 

freshwater fishes/1 roller for 

macrophytes]

M
e

s
o

c
o

s
m

15L glass tanks (35 cm x 20 cm x 25 cm) (Europrix, 

ref:01010305 )// 50L plastic tanks (17cm x 78,7cm x 

58,6cm) (Castorama, ref:3663602763192 )

21 // 12

1 per mesocosm  [4 glass tanks 

for freshwater fishes/5 plastic 

tanks for macrophytes]

43L plastic tank (45cm x 33cm x 28cm) + lid 

(Castorama, ref:3663602763154 )
10 1

~1400

~1500

Total price (€), case study with freshwater fishes (4 mesocosms)
T o tal p rice (€) (1 mes o co s m) ~1100

Total price (€), case study with macrophytes (5 mesocosms)

Module 
Temperature Dissolved oxygen
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